Skip to main content
  • Behnke, M. et al. CEPAV Dataset – Competitive Esports: Physiological, Affective, and Video Dataset. Open Sci. Framework https://doi.org/10.17605/OSF.IO/KGDSX (2024).

  • Sharpe, B. T. et al Reappraisal and mindset interventions on pressurised esport performance. Appl. Psychol. 1–22 (2024).

  • Sharpe, B. T., Obine, E. A., Birch, P. D., Pocock, C. & Moore, L. J. Performance breakdown under pressure among esports competitors. Sport Exerc. Perform. Psychol. 13, 89–109 (2024).


    Google Scholar
     

  • Behnke, M., Gross, J. J. & Kaczmarek, L. D. The role of emotions in esports performance. Emotion 22, 1059–1070 (2022).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Behnke, M., Kosakowski, M. & Kaczmarek, L. D. Social challenge and threat predict performance and cardiovascular responses during competitive video gaming. Psychol. Sport Exerc. 46, 101584 (2020).

    Article 

    Google Scholar
     

  • Behnke, M. et al. Applying a synergistic mindsets intervention to an esports context. R. Soc. Open Sci. 11, 240691 (2024).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Yeager, D. S. et al. A synergistic mindsets intervention protects adolescents from stress. Nature 607, 512–520 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Huang, W., Liu, G. & Wen, W. MAPD: A Multi-subject Affective Physiological Database. In Computational Intelligence and Design (2014).

  • Kutt, K. et al. BIRAFFE2: A multimodal dataset for emotion-based personalization in rich affective game environments. Sci. Data 9, 274 (2022).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Miranda-Correa, J. A., Abadi, M. K., Sebe, N. & Patras, I. Amigos: A dataset for affect personality and mood research on individuals and groups. IEEE Trans. Affective Comput. 12, 479–493 (2018).

    Article 

    Google Scholar
     

  • Subramanian, R. et al. ASCERTAIN: Emotion and personality recognition using commercial sensors. IEEE Trans. Affective Comput. 9, 147–160 (2016).

    Article 
    MATH 

    Google Scholar
     

  • Abadi, M. K. et al. DECAF: MEG-based multimodal database for decoding affective physiological responses. IEEE Trans. Affective Comput. 6, 209–222 (2015).

    Article 
    MATH 

    Google Scholar
     

  • Kang, S. et al. K-EmoPhone: A mobile and wearable dataset with in-situ emotion, stress, and attention labels. Sci. Data 10, 351 (2023).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Ranganathan, H., Chakraborty, S. & Panchanathan, S. Multimodal emotion recognition using deep learning architectures. In Winter Conf. Appl. Comput. Vision (2016).

  • Shui, X. et al. A dataset of daily ambulatory psychological and physiological recording for emotion research. Sci. Data 8, 161 (2021).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Smerdov, A. et al. Collection and validation of psychophysiological data from professional and amateur players: A multimodal esports dataset. arXiv preprint arXiv:2011.00958 (2020).

  • Song, T. et al. MPED: A multi-modal physiological emotion database for discrete emotion recognition. IEEE Access 7, 12177–12191 (2019).

    Article 
    MATH 

    Google Scholar
     

  • Behnke, M., Buchwald, M., Bykowski, A., Kupiński, S. & Kaczmarek, L. D. Psychophysiology of positive and negative emotions dataset of 1157 cases and 8 biosignals. Sci. Data 9, 10 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Melhart, D., Liapis, A. & Yannakakis, G. N. The arousal video game annotation (AGAIN) dataset. IEEE Trans. Affective Comput. 13, 2171–2184 (2022).

    Article 
    MATH 

    Google Scholar
     

  • Siqueira, E. S. et al. An automated approach to estimate player experience in game events from psychophysiological data. Multimedia Tools Appl. 82, 19189–19220 (2023).

    Article 
    MATH 

    Google Scholar
     

  • Yang, W., Rifqi, M., Marsala, C. & Pinna, A. Physiological-based emotion detection and recognition in a video game context. In Int. Joint Conf. Neural Networks (IJCNN) 1–8 (2018).

  • Behnke, M. et al. Supplementary materials for applying a synergistic mindsets intervention to an esports context. Open Sci. Framework https://osf.io/62yge (2024).

  • O’Brien, S. T. et al. SEMA3: A free smartphone platform for daily life surveys. Behav. Res. Methods 1–16 (2024).

  • Behnke, M. et al. CEPAV Dataset, Processed Data Component. Open Sci. Framework https://doi.org/10.17605/OSF.IO/NBYV4 (2024).

  • Bailey, H. Open Broadcasting Software. Retrieved from https://obsproject.com/ (2018).

  • Sherwood, A. et al. Methodological guidelines for impedance cardiography. Psychophysiology 27, 1–23 (1990).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • van Lien, R., Neijts, M., Willemsen, G. & de Geus, E. J. Ambulatory measurement of the ECG T‐wave amplitude. Psychophysiology 52, 225–237 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • McKinney, W. Data structures for statistical computing in Python. Proc. 9th Python Sci. Conf. 56–61 (2010).

  • Virtanen, P. et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Behnke, M. et al. CEPAV Dataset, Code Component. Open Science Framework https://doi.org/10.17605/OSF.IO/GFZ3M (2024).

  • Behnke, M. et al. CEPAV Dataset, Videos Component. Open Science Framework https://doi.org/10.17605/OSF.IO/QKD5B (2024).

  • Behnke, M. et al. CEPAV Dataset, Raw_Physio Component. Open Science Framework https://doi.org/10.17605/OSF.IO/HKDUY (2024).

  • Levenson, R. W. The autonomic nervous system and emotion. Emotion Rev. 6, 100–112 (2014).

    Article 
    MATH 

    Google Scholar
     

  • Thong, J. T. L., Sim, K. S. & Phang, J. C. H. Single‐image signal‐to‐noise ratio estimation. Scanning 23, 328–336 (2001).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Sijbers, J., Scheunders, P., Bonnet, N., Van Dyck, D. & Raman, E. Quantification and improvement of the signal-to-noise ratio in a magnetic resonance image acquisition procedure. Magn. Reson. Imaging 14, 1157–1163 (1996).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Leys, C., Ley, C., Klein, O., Bernard, P. & Licata, L. Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median. J. Exp. Soc. Psychol. 49, 764–766 (2013).

    Article 

    Google Scholar
     

  • Leys, C., Delacre, M., Mora, Y. L., Lakens, D. & Ley, C. How to classify, detect, and manage univariate and multivariate outliers, with emphasis on pre-registration. Int. Rev. Soc. Psychol. 32, (2019).

  • Prospective Studies Collaboration. Age-specific relevance of usual blood pressure to vascular mortality: A meta-analysis of individual data for one million adults in 61 prospective studies. The Lancet 360, 1903–1913 (2002).

    Article 
    MATH 

    Google Scholar
     

  • Epel, E. S. et al. More than a feeling: A unified view of stress measurement for population science. Front. Neuroendocrinol. 49, 146–169 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hughes, B. M., Lü, W. & Howard, S. Cardiovascular stress-response adaptation: Conceptual basis, empirical findings, and implications for disease processes. Int. J. Psychophysiol. 131, 4–12 (2018).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Van Rossum, G. & Drake, F. L. Jr Python tutorial (Vol. 620). Centrum voor Wiskunde en Informatica. Available at: https://scicomp.ethz.ch/public/manual/Python/3.9.9/tutorial.pdf (1995).

  • Kluyver, T. et al. Jupyter Notebooks—a publishing format for reproducible computational workflows. Positioning and Power in Academic Publishing: Players, Agents and Agendas – Proc. 20th Int. Conf. Electron. Publ. (eds. Loizides, F. & Schmidt, B.) (IOS Press, 2016).

  • Fredrickson, B. L. Positive emotions broaden and build. Adv. Exp. Soc. Psychol. 47, 1–53 (2013).

    Article 
    MATH 

    Google Scholar
     

  • Medland, H., De France, K., Hollenstein, T., Mussoff, D. & Koval, P. Regulating emotion systems in everyday life: Reliability and validity of the RESS-EMA scale. Eur. J. Psychol. Assess. 36, 437 (2020).

    Article 

    Google Scholar
     

  • Dweck, C. S. Mindset: The New Psychology of Success. Random House (2006).

  • Kanafa-Chmielewska, D. & Bartosz, B. Poczucie kontroli w sferze osobistej, interpersonalnej i socjopolitycznej, nastawienie na stałość lub zmienność a oceny na studiach. Pol. J. Appl. Psychol. 16, (2018).

  • Crum, A. J., Salovey, P. & Achor, S. Rethinking stress: the role of mindsets in determining the stress response. J. Pers. Soc. Psychol. 104, 716 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Mierzejewska-Floreani, D., Banaszkiewicz, M. & Gruszczyńska, E. Psychometric properties of the Stress Mindset Measure (SMM) in the Polish population. PLoS One 17, e0264853 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robins, R. W., Hendin, H. M. & Trzesniewski, K. H. Measuring global self-esteem: Construct validation of a single-item measure and the Rosenberg Self-Esteem Scale. Pers. Soc. Psychol. Bull. 27, 151–161 (2001).

    Article 
    MATH 

    Google Scholar
     

  • Shields, S. A., Mallory, M. E. & Simon, A. The body awareness questionnaire: reliability and validity. J. Pers. Assess. 53, 802–815 (1989).

    Article 
    MATH 

    Google Scholar
     

  • Brytek-Matera, A. & Kozieł, A. The body self-awareness among women practicing fitness: a preliminary study. Pol. Psychol. Bull. 46, 104–111 (2015).

    Article 

    Google Scholar
     

  • Kjell, O. N. & Diener, E. Abbreviated three-item versions of the Satisfaction with Life Scale and the Harmony in Life Scale yield as strong psychometric properties as the original scales. J. Pers. Assess. 103, 183–194 (2021).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Diener, E., Emmons, R. A., Larsen, R. J. & Griffin, S. The Satisfaction with Life Scale. J. Pers. Assess. 49, 71–75 (1985).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Jankowski, K. S. Is the shift in chronotype associated with an alteration in well-being? Biol. Rhythm Res. 46, 237–248 (2015).

    Article 
    MATH 

    Google Scholar
     

  • Diener, E. et al. New measures of well-being: Flourishing and positive and negative feelings. Soc. Indic. Res. 39, 247–266 (2009).

    MATH 

    Google Scholar
     

  • Kaczmarek, Ł. D. Pozytywne interwencje psychologiczne. Zachowania intencjonalne a dobrostan. Zysk i Ska Wydawnictwo (2016).

  • Ware, J. E. Jr. & Sherbourne, C. D. The MOS 36-item short-form health survey (SF-36): I. Conceptual framework and item selection. Med. Care 30, 473–483 (1992).

    Article 
    PubMed 

    Google Scholar
     

  • Kroenke, K., Spitzer, R. L. & Williams, J. B. The Patient Health Questionnaire-2: validity of a two-item depression screener. Med. Care 41, 1284–1292 (2003).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Kroenke, K., Spitzer, R. L., Williams, J. B., Monahan, P. O. & Löwe, B. Anxiety disorders in primary care: prevalence, impairment, comorbidity, and detection. Ann. Intern. Med. 146, 317–325 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Pontes, H. M. et al. Measurement and conceptualisation of Gaming Disorder according to the World Health Organization framework: The development of the Gaming Disorder Test. Int. J. Ment. Health Addict. 19, 508–528 (2021).

    Article 
    MATH 

    Google Scholar
     

  • Preece, D. A. et al. The Perth Alexithymia Questionnaire-Short form (PAQ-S): A 6-item measure of alexithymia. J. Affect. Disord. 325, 493–501 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Becerra, R., Preece, D. A. & Gross, J. J. Assessing beliefs about emotions: Development and validation of the Emotion Beliefs Questionnaire. PLoS One 15, e0231395 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Uusberg, A. et al. Appraisal shifts during reappraisal. Emotion 23, 1985–2001 (2023).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Moore, L. J., Vine, S. J., Wilson, M. R. & Freeman, P. The effect of challenge and threat states on performance: An examination of potential mechanisms. Psychophysiology 49, 1417–1425 (2012).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Moore, L. J., Wilson, M. R., Vine, S. J., Coussens, A. H. & Freeman, P. Champ or chump?: Challenge and threat states during pressurized competition. J. Sport Exerc. Psychol. 35, 551–562 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Moore, L. J., Vine, S. J., Wilson, M. R. & Freeman, P. Reappraising threat: How to optimize performance under pressure. J. Sport Exerc. Psychol. 37, 339–343 (2015).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Tomaka, J., Blascovich, J., Kelsey, R. M. & Leitten, C. L. Subjective, physiological, and behavioral effects of threat and challenge appraisal. J. Pers. Soc. Psychol. 65, 248–260 (1993).

    Article 

    Google Scholar
     

  • Koelstra, S. et al. Deap: A database for emotion analysis; using physiological signals. IEEE Trans. Affective Comput. 3, 18–31 (2011).

    Article 

    Google Scholar
     

  • Soleymani, M., Lichtenauer, J., Pun, T. & Pantic, M. A multimodal database for affect recognition and implicit tagging. IEEE Trans. Affective Comput. 3, 42–55 (2011).

    Article 

    Google Scholar
     

  • Ringeval, F., Sonderegger, A., Sauer, J. & Lalanne, D. Introducing the RECOLA multimodal corpus of remote collaborative and affective interactions. In Face Gesture Recognit. (2013).

  • Eysenck, H. J. & Eysenck, S. B. G. Manual of the Eysenck Personality Questionnaire (Junior & Adult). Hodder and Stoughton Educational (1975).

  • Koldijk, S., Sappelli, M., Verberne, S., Neerincx, M. A. & Kraaij, W. The swell knowledge work dataset for stress and user modeling research. In Multimodal Interaction (2014).

  • Zhang, Z. et al. Multimodal spontaneous emotion corpus for human behavior analysis. In IEEE Conf. Comput. Vision Pattern Recognit. 3438–3446 (2016).

  • Zhang, L. et al. “BioVid Emo DB”: A multimodal database for emotion analyses validated by subjective ratings. In IEEE Symp. Series Comput. Intelligence (SSCI) 1–6 (2016).

  • Perugini, M. & Di Blas, L. Analyzing personality-related adjectives from an etic-emic perspective: The Big Five Marker Scale (BFMS) and the Italian AB5C taxonomy. In Big Five Assessment (Hogrefe & Huber, 2002).

  • Hsu, Y. L., Wang, J. S., Chiang, W. C. & Hung, C. H. Automatic ECG-based emotion recognition in music listening. IEEE Trans. Affective Comput. 11, 85–99 (2017).

    Article 
    MATH 

    Google Scholar
     

  • Katsigiannis, S. & Ramzan, N. DREAMER: A database for emotion recognition through EEG and ECG signals from wireless low-cost off-the-shelf devices. IEEE J. Biomed. Health Inform. 22, 98–107 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Quiroz, J. C., Geangu, E. & Yong, M. H. Emotion recognition using smart watch sensor data: Mixed-design study. JMIR Ment. Health 5, e10153 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmidt, P., Reiss, A., Duerichen, R., Marberger, C. & Van Laerhoven, K. Introducing wesad: A multimodal dataset for wearable stress and affect detection. In Multimodal Interaction (2018).

  • Markova, V., Ganchev, T. & Kalinkov, K. Clas: A database for cognitive load, affect, and stress recognition. In Biomed. Innov. Appl. (2019).

  • Sharma, K. et al. A dataset of continuous affect annotations and physiological signals for emotion analysis. Sci. Data 6, 196 (2019).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Park, C. Y. et al. K-EmoCon: A multimodal sensor dataset for continuous emotion recognition in naturalistic conversations. Sci. Data 7, 293 (2020).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Benet-Martínez, V. & John, O. P. Los Cinco Grandes across cultures and ethnic groups: Multitrait-multimethod analyses of the Big Five in Spanish and English. J. Pers. Soc. Psychol. 75, 729–750 (1998).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • John, O. P., Donahue, E. M. & Kentle, R. L. The Big Five Inventory – Versions 4a and 54. (University of California, Berkeley, Institute of Personality and Social Research, 1991).

  • Wang, Z. et al. Reliability and validity of the Chinese version of Beck Depression Inventory-II among depression patients. Chin. Ment. Health J. 25, 476–480 (2011).

    CAS 
    MATH 

    Google Scholar
     

  • Rosenberg, M. Society and the Adolescent Self-Image. Princeton University Press (1965).

  • Christy, A. G., Schlegel, R. J. & Cimpian, A. Why do people believe in a “true self”? The role of essentialist reasoning about personal identity and the self. J. Pers. Soc. Psychol. 117, 386–416 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Singelis, T. M. The measurement of independent and interdependent self-construals. Pers. Soc. Psychol. Bull. 20, 580–591 (1994).

    Article 
    MATH 

    Google Scholar
     

  • Steger, M. F., Frazier, P., Oishi, S. & Kaler, M. The meaning in life questionnaire. J. Couns. Psychol. 53, 80–93 (2015).

    Article 

    Google Scholar
     

  • Gosling, S. D., Rentfrow, P. J. & Swann, W. B. Jr. A very brief measure of the Big-Five personality domains. J. Res. Pers. 37, 504–528 (2003).

    Article 

    Google Scholar
     

  • Li, J. Psychometric properties of Ten-Item Personality Inventory in China. Chin. J. Health Psychol. 21, 1688–1692 (2013).

    MATH 

    Google Scholar
     

  • Gao, Z., Cui, X., Wan, W., Zheng, W. & Gu, Z. ECSMP: A dataset on emotion cognition, sleep, and multi-model physiological signals. Data Brief 39, 107660 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gross, J. J. & John, O. P. Individual differences in two emotion regulation processes: Implications for affect, relationships, and well-being. J. Pers. Soc. Psychol. 85, 348–362 (2003).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • William, W. K. Zung self-rating depression scale. Encycl. Qual. Life Well Being Res 7317 (2014).

  • Beili, Z. Introduction to the POMS scale and the short-form Chinese norm. J. Tianjin Sports Inst. 35–37 (1995).

  • Buysse, D. J., Reynolds, C. F., Monk, T. H., Berman, S. R. & Kupfer, D. J. The Pittsburgh sleep quality index: A new instrument for psychiatric practice and research. Psychiatry Res. 28, 193–213 (1989).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Sabour, R. M. et al. Ubfc-phys: A multimodal database for psychophysiological studies of social stress. IEEE Trans. Affective Comput. (2021).

  • Raheel, A., Majid, M. & Anwar, S. M. DEAR-MULSEMEDIA: Dataset for emotion analysis and recognition in response to multiple sensorial media. Inf. Fusion 65, 37–49 (2021).

    Article 
    MATH 

    Google Scholar
     

  • Costa, P. & McCrae, R. Revised NEO Personality Inventory (NEO-PI-R) and NEO Five Factor Inventory (NEO-FFI). Professional manual. Psychological Assessment Resources (1992).

  • IJsselsteijn, W. A., de Kort, Y. A. W. & Poels, K. The Game Experience Questionnaire. Technische Universiteit Eindhoven (2013).

  • Saganowski, S. et al. Emognition dataset: Emotion recognition with self-reports, facial expressions, and physiology using wearables. Sci. Data 9, 158 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kroenke, K., Spitzer, R. L. & Williams, J. B. W. The PHQ-9: Validity of a brief depression severity measure. J. Gen. Intern. Med. 16, 606–613 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Goldberg, D. P. & Hillier, V. F. A scaled version of the general health questionnaire. Psychol. Med. 9, 139–145 (1979).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Ab. Aziz, N. A. K. T. et al. Asian affective and emotional state (A2ES) dataset of ECG and PPG for affective computing research. Algorithms 16, 130 (2023).

    Article 

    Google Scholar
     

  • Cohn, M. A., Fredrickson, B. L., Brown, S. L., Mikels, J. A. & Conway, A. M. Happiness unpacked: Positive emotions increase life satisfaction by building resilience. Emotion 9, 361–368 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fredrickson, B. L. et al. Positive emotion correlates of meditation practice: A comparison of mindfulness meditation and loving-kindness meditation. Mindfulness 8, 1623–1633 (2017).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Wang, K. et al. A multi-country test of brief reappraisal interventions on emotions during the COVID-19 pandemic. Nat. Hum. Behav. 5, 1089–1110 (2021).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • De France, K. & Hollenstein, T. Assessing emotion regulation repertoires: The regulation of emotion systems survey. Pers. Individ. Differ. 119, 204–215 (2017).

    Article 

    Google Scholar
     

  • De France, K. & Hollenstein, T. Emotion regulation and relations to well-being across the lifespan. Dev. Psychol. 55, 1768–1778 (2019).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Wylie, M. S. et al. Momentary emotion regulation strategy use and success: Testing the influences of emotion intensity and habitual strategy use. Emotion 22, 83–95 (2022).

    MATH 

    Google Scholar
     

  • Crum, A. J., Akinola, M., Martin, A. & Fath, S. The role of stress mindset in shaping cognitive, emotional, and physiological responses to challenging and threatening stress. Anxiety Stress Coping 30, 379–395 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Klussman, K., Lindeman, M. I. H., Nichols, A. L. & Langer, J. Fostering stress resilience among business students: The role of stress mindset and self-connection. Psychol. Rep. 124, 1462–1480 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Haimovitz, K. & Dweck, C. S. What predicts children’s fixed and growth intelligence mind-sets? Not their parents’ views of intelligence but their parents’ views of failure. Psychol. Sci. 27, 859–869 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Marengo, D., Montag, C., Sindermann, C., Elhai, J. D. & Settanni, M. Examining the links between active Facebook use, received likes, self-esteem and happiness: A study using objective social media data. Telemat. Inform. 58, 101523 (2021).

    Article 

    Google Scholar
     

  • Panzeri, A. et al. Factors impacting resilience as a result of exposure to COVID-19: The ecological resilience model. PLoS One 16, e0256041 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Rodgers, R. F. et al. A biopsychosocial model of social media use and body image concerns, disordered eating, and muscle-building behaviors among adolescent girls and boys. J. Youth Adolesc. 49, 399–409 (2020).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Crucianelli, L., Enmalm, A. & Ehrsson, H. H. Interoception as independent cardiac, thermosensory, nociceptive, and affective touch perceptual submodalities. Biol. Psychol. 172, 108355 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Zamariola, G. et al. Relationship between interoceptive accuracy, interoceptive sensibility, and alexithymia. Pers. Individ. Differ. 125, 14–20 (2018).

    Article 

    Google Scholar
     

  • Lawes, M., Hetschko, C., Schöb, R., Stephan, G. & Eid, M. The impact of unemployment on cognitive, affective, and eudaimonic well-being facets: Investigating immediate effects and short-term adaptation. J. Pers. Soc. Psychol. 124, 659–681 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Majka, E. A., Guenther, M. F. & Raimondi, S. L. Science bootcamp goes virtual: A compressed, interdisciplinary online CURE promotes psychosocial gains in STEM transfer students. J. Microbiol. Biol. Educ. 22, 10–1128 (2021).

    Article 

    Google Scholar
     

  • Nilsson, A. H., Hellryd, E. & Kjell, O. Doing well-being: Self-reported activities are related to subjective well-being. PLoS One 17, e0270503 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lambert, L., Passmore, H. A. & Joshanloo, M. A positive psychology intervention program in a culturally-diverse university: Boosting happiness and reducing fear. J. Happiness Stud. 20, 1141–1162 (2019).

    Article 
    MATH 

    Google Scholar
     

  • Kluck, J. P., Stoyanova, F. & Krämer, N. C. Putting the social back into physical distancing: The role of digital connections in a pandemic crisis. Int. J. Psychol. 56, 594–606 (2021).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Roksa, J. & Kinsley, P. The role of family support in facilitating academic success of low-income students. Res. High. Educ. 60, 415–436 (2019).

    Article 
    MATH 

    Google Scholar
     

  • Carstensen, L. L., Shavit, Y. Z. & Barnes, J. T. Age advantages in emotional experience persist even under threat from the COVID-19 pandemic. Psychol. Sci. 31, 1374–1385 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Fingerman, K. L. et al. Living alone during COVID-19: Social contact and emotional well-being among older adults. J. Gerontol. B 76, e116–e121 (2021).

    Article 

    Google Scholar
     

  • Sibley, C. G. et al. Effects of the COVID-19 pandemic and nationwide lockdown on trust, attitudes toward government, and well-being. Am. Psychol. 75, 618–630 (2020).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • MAPI Research Institute. Patient Health Questionnaire (PHQ). Available at: https://eprovide.mapi-trust.org/instruments/patient-health-questionnaire (accessed July 2023).

  • Daly, M., Sutin, A. R. & Robinson, E. Depression reported by US adults in 2017–2018 and March and April 2020. J. Affect. Disord. 278, 131–135 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gualano, M. R., Lo Moro, G., Voglino, G., Bert, F. & Siliquini, R. Effects of Covid-19 lockdown on mental health and sleep disturbances in Italy. Int. J. Environ. Res. Public Health 17, 4779 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matar Boumosleh, J. & Jaalouk, D. Depression, anxiety, and smartphone addiction in university students—A cross-sectional study. PLoS One 12, e0182239 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • MAPI Research Institute. Generalized Anxiety Disorder – 7 (GAD-7). Available at: https://eprovide.mapi-trust.org/instruments/generalized-anxiety-disorder-7 (accessed July 2023).

  • Staples, L. G. et al. Psychometric properties and clinical utility of brief measures of depression, anxiety, and general distress: The PHQ-2, GAD-2, and K-6. Gen. Hosp. Psychiatry 56, 13–18 (2019).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Cudo, A., Montag, C. & Pontes, H. M. Psychometric assessment and gender invariance of the Polish version of the Gaming Disorder Test. Int. J. Ment. Health Addict. 1–24 (2022).

  • Becerra, R., Gainey, K., Murray, K. & Preece, D. A. Intolerance of uncertainty and anxiety: The role of beliefs about emotions. J. Affect. Disord. 324, 349–353 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Monsoon, A. D., Preece, D. A. & Becerra, R. Control and acceptance beliefs about emotions: Associations with psychological distress and the mediating role of emotion regulation flexibility. Aust. Psychol. 57, 236–248 (2022).

    Article 

    Google Scholar
     

  • Preece, D. A. et al. Emotion generation and emotion regulation: The role of emotion beliefs. J. Affect. Disord. Rep. 9, 100351 (2022).

    Article 
    MATH 

    Google Scholar
     

  • Schleider, J. L. et al. Acceptability and utility of an open-access, online single-session intervention platform for adolescent mental health. JMIR Ment. Health 7, e20513 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dobias, M. L., Schleider, J. L., Jans, L. & Fox, K. R. An online, single-session intervention for adolescent self-injurious thoughts and behaviors: Results from a randomized trial. Behav. Res. Ther. 147, 103983 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Schleider, J. L., Mullarkey, M. C. & Weisz, J. R. Virtual reality and web-based growth mindset interventions for adolescent depression: Protocol for a three-arm randomized trial. JMIR Res. Protoc. 8, e13368 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abbey, J. D. & Meloy, M. G. Attention bydesign: Using attention checks to detect inattentive respondentsand improve data quality. J. Oper. Manag. 53, 63–70 (2017).

    Article 

    Google Scholar
     

  • Meade, A. W. & Craig, S. B. Identifying carelessresponses in survey data. Psychol. Methods 17, 437–455 (2012).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Source link

    Subscribe our Newsletter

    Congratulation!