Skip to main content
  • Alotaibi, A., Alosaimi, F., Alajlan, A. & Bin Abdulrahman, K. The relationship between sleep quality, stress, and academic performance among medical students. J. Family Community Med. 27, 23–28 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ramón-Arbués, E. et al. The prevalence of depression, anxiety and stress and their associated factors in college students. Int. J. Environ. Res. Public. Health. 17, 7001 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nandakumar, H., Kuppusamy, M. K., Sekhar, L. & Ramaswamy, P. Prevalence of premenstrual syndrome among students – Stress a potential risk factor. Clin. Epidemiol. Glob Health. 23, 101368 (2023).

    CAS 

    Google Scholar
     

  • Ngoc, N. B. & Van Tuan, N. Stress among nursing students in vietnam: prevalence and associated factors. Int. Nurs. Rev. https://doi.org/10.1111/inr.12831 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Sundarasen, S. et al. Psychological impact of covid-19 and lockdown among university students in malaysia: implications and policy recommendations. Int. J. Environ. Res. Public. Health. 17, 6206 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kingsford, C. & Salzberg, S. L. What are decision trees? Nat. Biotechnol. 26 https://doi.org/10.1038/nbt0908-1011 (2008).

  • Custode, L. L. & Iacca, G. Evolutionary learning of interpretable decision trees. IEEE Access. 11, 6169–6184 (2023).


    Google Scholar
     

  • Ruiz-Juárez, H. M. et al. A decision tree as an explainable artificial intelligence technique for identifying agricultural production predictor variables in Mexico. In International Congress of Telematics and Computing 1–14. https://doi.org/10.1007/978-3-031-45316-8_1/COVER (Springer, 2023).

  • Ahuja, R. & Banga, A. Mental stress detection in university students using machine learning algorithms. Procedia Comput. Sci.. 152, 349–353 (2019).


    Google Scholar
     

  • Traulsen, A. & Glynatsi, N. E. The future of theoretical evolutionary game theory. Philosophical Trans. Royal Soc. B: Biol. Sci. 378, 20210508 (2023).


    Google Scholar
     

  • Lundberg, S. M. & Lee, S. I. A unified approach to interpreting model predictions. In Advances in Neural Information Processing Systems 30 (NIPS 2017), 4765-4774. (2017).

  • Ramírez-Montoya, M. S., Casillas-Muñoz, F., Tariq, R., Álvarez-Icaza, I. & Portuguez-Castro, M. Reimagining the future through the co-creation of social entrepreneurship in higher education: a multivariate prediction model approach. Kybernetes 54, 1–19 (2024).


    Google Scholar
     

  • Tariq, R., Aponte Babines, B. M., Ramirez, J., Alvarez-Icaza, I. & Naseer, F. Computational thinking in STEM education: current state-of-the-art and future research directions. Front. Comput. Sci. 6, 1480404 (2025).


    Google Scholar
     

  • da Silva Ezequiel, O. et al. Factors associated with motivation in medical students: A 30-Month longitudinal study. Med. Sci. Educ. 32, 1375–1385 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Damiano, R. F., de Oliveira, I. N., Ezequiel, O. S., Lucchetti, A. L. & Lucchetti, G. The root of the problem: identifying major sources of stress in Brazilian medical students and developing the medical student stress factor scale. Brazilian J. Psychiatry. 43, 35–42 (2020).


    Google Scholar
     

  • Moldt, J. A., Festl-Wietek, T., Mamlouk, A. M. & Herrmann-Werner, A. Assessing medical students’ perceived stress levels by comparing a chatbot-based approach to the perceived stress questionnaire (PSQ20) in a mixed-methods study. Digit. Health 8, (2022).

  • Vázquez-Parra, J. C., Tariq, R., Castillo-Martínez, I. M. & Naseer, F. Perceived competency in complex thinking skills among university community members in pakistan: insights across disciplines. Cogent Educ. 12, 2442066 (2025).


    Google Scholar
     

  • Roe, T., Flechtner, F. & Gordon, A. T. Urging caution regarding the generalizability of the medical student stress factor scale: a medical student perspective. Brazilian J. Psychiatry. 43, 227 (2021).


    Google Scholar
     

  • Saleh, D., Camart, N. & Romo, L. Predictors of stress in college students. Front. Psychol. 8, 19 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bayrak, R., Güler, M. & Şahin, N. H. The mediating role of Self-Concept and coping strategies on the relationship between attachment styles and perceived stress. Eur. J. Psychol. 14, 897 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mohd, N. & Yahya, Y. A data mining approach for prediction of students’ depression using logistic regression and artificial neural network. ACM Int. Conf. Proc. Ser. https://doi.org/10.1145/3164541.3164604 (2018).

  • Marsella, E. & Citrayasa, V. An analysis of students’ stress factor and expectation of online learning A corpus approach. In 2nd International Conference on Innovative Research in Applied Science, Engineering and Technology, IRASET 2022 https://doi.org/10.1109/IRASET52964.2022.9737744 (2022).

  • Strout, K., Schwartz-Mette, R., Parsons, K. & Sapp, M. The scholarship of wellness and mindfulness to support First-Year nursing students’ response to stress. Nurs. Educ. Perspect. 45, 330–332 (2024).

    PubMed 

    Google Scholar
     

  • Dogu, N. et al. Comparison of the escape room and storytelling methods in learning the stress response: A randomized controlled pilot study. Nurse Educ. Pract. 82, 104209 (2025).

    PubMed 

    Google Scholar
     

  • Tang, S. C. & Tang, L. C. Exploring the impact of digital concept mapping methods on nurse students’ learning anxiety, learning motivation. Eval Program. Plann. 106, 102466 (2024).

    PubMed 

    Google Scholar
     

  • Salim, Prasetia, M. A., Bagas, F. M., Rohman, F. & Abdurrahman The impact of blended learning an educational innovation as on student character Building in Islamic religious education. Qubahan Acad. J. 4, 139–151 (2024).


    Google Scholar
     

  • Ramírez-Montoya, M. S. & Vicario-Solorzano, C. M. González-Pérez, L. I. Navigating interconnected complexities: validation and reliability of an instrument for sustainable development of education 5.0. Cogent Educ. 11, 2388975 (2024).


    Google Scholar
     

  • Edwards, C. & Hardie, L. Fostering a sense of belonging through online qualification events. Distance Educ. 45, 210–228 (2024).


    Google Scholar
     

  • Zamir, M. T. et al. Machine and deep learning algorithms for sentiment analysis during COVID-19: A vision to create fake news resistant society. PLoS One. 19, e0315407 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nazeer, M. et al. Improved method for stress detection using bio-sensor technology and machine learning algorithms. MethodsX 12, 102581 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Naegelin, M. et al. An interpretable machine learning approach to multimodal stress detection in a simulated office environment. J. Biomed. Inf. 139, 104299 (2023).


    Google Scholar
     

  • Gonzalez-Carabarin, L., Castellanos-Alvarado, E. A., Castro-Garcia, P. & Garcia-Ramirez, M. A. Machine learning for personalised stress detection: Inter-individual variability of EEG-ECG markers for acute-stress response. Comput. Methods Programs Biomed. 209, 106314 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Panicker, S. S. & Gayathri, P. A survey of machine learning techniques in physiology based mental stress detection systems. Biocybern Biomed. Eng. 39, 444–469 (2019).


    Google Scholar
     

  • Ahuja, R. & Banga, A. Mental stress detection in university students using machine learning algorithms. Procedia Comput. Sci. 152, 349–353 (2019).


    Google Scholar
     

  • Vos, G., Trinh, K., Sarnyai, Z. & Rahimi Azghadi, M. Ensemble machine learning model trained on a new synthesized dataset generalizes well for stress prediction using wearable devices. J. Biomed. Inf. 148, 104556 (2023).


    Google Scholar
     

  • Vos, G., Trinh, K. & Sarnyai, Z. Rahimi Azghadi, M. Generalizable machine learning for stress monitoring from wearable devices: A systematic literature review. Int. J. Med. Inf. 173, 105026 (2023).


    Google Scholar
     

  • Ratul, I. J. et al. Analyzing perceived psychological and social stress of university students: A machine learning approach. Heliyon 9, e17307 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Daza, A., Saboya, N., Necochea-Chamorro, J. I. & Zavaleta Ramos, K. Vásquez Valencia, Y. del R. Systematic review of machine learning techniques to predict anxiety and stress in college students. Inf. Med. Unlocked. 43, 101391 (2023).


    Google Scholar
     

  • Bhatnagar, S., Agarwal, J. & Sharma, O. R. Detection and classification of anxiety in university students through the application of machine learning. Procedia Comput. Sci. 218, 1542–1550 (2023).


    Google Scholar
     

  • Sergio, W. L., Ströele, V., Dantas, M., Braga, R. & Macedo, D. D. Enhancing well-being in modern education: A comprehensive eHealth proposal for managing stress and anxiety based on machine learning. Internet Things. 25, 101055 (2024).


    Google Scholar
     

  • Shah, M. et al. Neuropsychological detection and prediction using machine learning algorithms: a comprehensive review. Intell. Med. https://doi.org/10.1016/J.IMED.2023.04.003 (2023).

    Article 

    Google Scholar
     

  • Mittal, S., Mahendra, S., Sanap, V. & Churi, P. How can machine learning be used in stress management: A systematic literature review of applications in workplaces and education. Int. J. Inform. Manage. Data Insights. 2, 100110 (2022).


    Google Scholar
     

  • Rayan, A. & Alanazi, S. A novel approach to forecasting the mental well-being using machine learning. Alexandria Eng. J. 84, 175–183 (2023).


    Google Scholar
     

  • Singh, A. & Kumar, D. Computer assisted identification of stress, anxiety, depression (SAD) in students: A state-of-the-art review. Med. Eng. Phys. 110, 103900 (2022).

    PubMed 

    Google Scholar
     

  • Fernandez, J., Martínez, R., Innocenti, B. & López, B. Contribution of EEG signals for students’ stress detection. IEEE Trans. Affect. Comput. https://doi.org/10.1109/TAFFC.2024.3503995 (2024).

    Article 

    Google Scholar
     

  • Hafeez, M. A. & Shakil, S. EEG-based stress identification and classification using deep learning. Multimed Tools Appl. 83, 42703–42719 (2024).


    Google Scholar
     

  • Pourmohammadi, S. & Maleki, A. Stress detection using ECG and EMG signals: A comprehensive study. Comput. Methods Programs Biomed. 193, 105482 (2020).

    PubMed 

    Google Scholar
     

  • Tiwari, S., Agarwal, S. A. & Shrewd Artificial Neural Network-Based hybrid model for pervasive stress detection of students using galvanic skin response and electrocardiogram signals. Big Data. 9, 427–442 (2021).

    PubMed 

    Google Scholar
     

  • Zhu, Y., Feng, S. & Ni, H. Construction and optimization of online assessment model of college students’ mental health Micro-Media based on factor analysis and deep learning. J. Netw. Intell. 9, 2167–2186 (2024).


    Google Scholar
     

  • Oryngozha, N., Shamoi, P. & Igali, A. Detection and analysis of Stress-Related posts in reddit’s acamedic communities. IEEE Access. 12, 14932–14948 (2024).


    Google Scholar
     

  • Pérez, F. A., Santos-Gago, J. M., Caeiro-Rodríguez, M. & Fernández Iglesias, M. J. Evaluation of commercial-off-the-shelf wrist wearables to estimate stress on students. J. Visualized Experiments. 136, e57590 (2018).


    Google Scholar
     

  • Luo, Y. et al. Dynamic clustering via branched deep learning enhances personalization of stress prediction from mobile sensor data. Sci. Rep. 14, 6631 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Figueroa, C. et al. Measuring the effectiveness of a multicomponent program to manage academic stress through a resilience to stress index. Sensors 23, 2650 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morales-Rodríguez, F. M., Martínez-Ramón, J. P., Méndez, I., Ruiz-Esteban, C. & Stress Coping, and resilience before and after COVID-19: A predictive model based on artificial intelligence in the university environment. Front. Psychol. 12, 647964 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Filippis, R. & Foysal, A. A. Comprehensive analysis of stress factors affecting students: a machine learning approach. Discover Artif. Intell. 4, 62 (2024).


    Google Scholar
     

  • Kamakshamma, V. & Bharati, K. F. Adaptive-CSSA: adaptive-chicken squirrel search algorithm driven deep belief network for student stress-level and drop out prediction with mapreduce framework. Soc. Netw. Anal. Min. 13, 90 (2023).


    Google Scholar
     

  • Rois, R., Ray, M., Rahman, A. & Roy, S. K. Prevalence and predicting factors of perceived stress among Bangladeshi university students using machine learning algorithms. J. Health Popul. Nutr. 40, 50 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tseng, H. C. et al. Accurate mental stress detection using sequential backward selection and adaptive synthetic methods. IEEE Trans. Neural Syst. Rehabil. Eng. 32, 3095–3103 (2024).

    PubMed 

    Google Scholar
     

  • Hantono, B. S., Nugroho, L. E. & Santosa, P. I. Mental stress detection via heart rate variability using machine learning. Int. J. Electr. Eng. Inf. 12, 431–444 (2020).


    Google Scholar
     

  • Xu, W. et al. Gradient One-to-One optimizer and deep learning based student stress level prediction model. J. Sci. Ind. Res. (India). 83, 1184–1193 (2024).


    Google Scholar
     

  • AlShorman, O. et al. Frontal lobe real-time EEG analysis using machine learning techniques for mental stress detection. J. Integr. Neurosci. 21, 20 (2022).

    PubMed 

    Google Scholar
     

  • Liu, J. & Wang, H. Analysis of educational mental health and emotion based on deep learning and computational intelligence optimization. Front. Psychol. 13, 898609 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fonda, H., Irawan, Y., Melyanti, R., Wahyuni, R. & Muhaimin, A. A comprehensive stacking ensemble approach for stress level classification in higher education. J. Appl. Data Sci. 5, 1701–1714 (2024).


    Google Scholar
     

  • Rajendran, V. G., Jayalalitha, S., Adalarasu, K. & Mathi, R. Machine learning based human mental state classification using wavelet packet decomposition-an EEG study. Multimed Tools Appl. 83, 83093–83112 (2024).


    Google Scholar
     

  • Liao, Z., Fan, X., Ma, W. & Shen, Y. An examination of mental stress in college students: Utilizing intelligent perception data and the mental stress scale. Mathematics 12, (2024).

  • Wali, M. K. & Fayadh, R. A. Al shamaa, N. K. Electroencephalogram based stress detection using extreme learning machine. Nano Biomed. Eng. 14, 208–215 (2022).


    Google Scholar
     

  • Chen, Q. & Lee, B. G. Deep learning models for stress analysis in university students: A Sudoku-based study. Sensors 23, (2023).

  • Anwar, T. & Zakir, S. Machine learning based Real-Time diagnosis of mental stress using photoplethysmography. J. Biomimetics Biomaterials Biomedical Eng. 55, 154–167 (2022).


    Google Scholar
     

  • Student Stress Factors. A comprehensive analysis. https://www.kaggle.com/datasets/rxnach/student-stress-factors-a-comprehensive-analysis (2023).

  • Khanmohammadi, S., Musharavati, F. & Tariq, R. A framework of data modeling and artificial intelligence for environmental-friendly energy system: application of Kalina cycle improved with fuel cell and thermoelectric module. Process Saf. Environ. Prot. 164, 499–516 (2022).

    CAS 

    Google Scholar
     

  • Tariq, R. et al. Deep learning artificial intelligence framework for sustainable desiccant air conditioning system: optimization towards reduction in water footprints. Int. Commun. Heat Mass Transfer. 140, 106538 (2023).


    Google Scholar
     

  • Kuhn, M. & Johnson, K. Applied predictive modeling. Appl. Predictive Model. https://doi.org/10.1007/978-1-4614-6849-3 (2013).

    Article 

    Google Scholar
     

  • Hair, J. F., Black, W. C., Babin, B. J. & Anderson, R. E. Multivariate data analysis. Vectors https://doi.org/10.1016/j.ijpharm.2011.02.019 (2010).

  • O’Brien, R. M. A caution regarding rules of thumb for variance inflation factors. Qual. Quant. 41, 673–690 (2007).


    Google Scholar
     

  • Thoni, H., Neter, J., Wasserman, W. & Kutner, M. H. Appl. Linear Regres. Models Biometrics 46(1): 238–239 (1990).


    Google Scholar
     

  • Hong, C. et al. Privacy-preserving collaborative machine learning on genomic data using TensorFlow. In ACM International Conference Proceeding Series https://doi.org/10.1145/3393527.3393535 (2020).

  • Boser, B. E., Guyon, I. M. & Vapnik, V. N. Training algorithm for optimal margin classifiers. In Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory https://doi.org/10.1145/130385.130401 (1992).

  • Friedman, J. H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 29 (5), 1189–1232 (2001).

    MathSciNet 

    Google Scholar
     

  • Zhang, P., Jia, Y. & Shang, Y. Research and application of XGBoost in imbalanced data. Int. J. Distrib. Sens. Netw. 18 (1), 15501477221086147 (2022).


    Google Scholar
     

  • Schonlau, M. & Zou, R. Y. The random forest algorithm for statistical learning. Stata J. 20 (1), 3–29 (2020).


    Google Scholar
     

  • Smarra, F. et al. Data-driven model predictive control using random forests for Building energy optimization and climate control. Appl. Energy. 226, 1252–1272 (2018).


    Google Scholar
     

  • Bischl, B. et al. Hyperparameter optimization: Foundations, algorithms, best practices, and open challenges. Wiley Interdisc. Rev. Data Min. Knowl. Discov. 13 https://doi.org/10.1002/widm.1484 (2023).

  • Elgeldawi, E., Sayed, A., Galal, A. R. & Zaki, A. M. Hyperparameter tuning for machine learning algorithms used for Arabic sentiment analysis. Informatics 8 (4), 79 (2021).


    Google Scholar
     

  • Machlev, R. et al. Explainable artificial intelligence (XAI) techniques for energy and power systems: Review, challenges and opportunities. Energy AI. 9, 100169 (2022).


    Google Scholar
     

  • Tsoka, T., Ye, X., Chen, Y., Gong, D. & Xia, X. Explainable artificial intelligence for Building energy performance certificate labelling classification. J. Clean. Prod. 355, 131626 (2022).


    Google Scholar
     

  • Vega García, M. & Aznarte, J. L. Shapley additive explanations for NO₂ forecasting. Ecol. Inf. 56, 101039 (2020).


    Google Scholar
     

  • Gupta, P., Maji, S. & Mehra, R. Predictive modeling of stress in the healthcare industry during COVID-19: A novel approach using XGBoost, SHAP Values, and tree explainer. Int. J. Decis. Support Syst. Technol. 15 (2), 1–16 (2022).


    Google Scholar
     

  • Marins, F. R. et al. Autonomic and cardiovascular consequences resulting from experimental hemorrhagic stroke in the left or right intermediate insular cortex in rats. Auton. Neurosci. 227, 102695 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Liu, J. et al. Community-based participatory research (CBPR) approach to study children’s health in China: Experiences and reflections. Int. J. Nurs. Stud. 48 https://doi.org/10.1016/j.ijnurstu.2011.04.003 (2011).

  • Kalmbach, D. A., Pillai, V., Roth, T. & Drake, C. L. The interplay between daily affect and sleep: A 2-week study of young women. J. Sleep. Res. 23 (6), 636–645 (2014).

    PubMed 

    Google Scholar
     

  • Herman, K. C., Hickmon-Rosa, J. & Reinke, W. M. Empirically derived profiles of teacher Stress, Burnout, Self-Efficacy, and coping and associated student outcomes. J. Posit. Behav. Interv. 20 (2), 90–100 (2018).


    Google Scholar
     

  • Fredricks, J. A. & Eccles, J. S. Is extracurricular participation associated with beneficial outcomes? Concurrent and longitudinal relations. Dev. Psychol. 42 (4), 698–713 (2006).

    PubMed 

    Google Scholar
     

  • Laura, C., Carlos, C., Santiago, G. & Graziela, R. Maria José, C. Prevalence and risk factors for anxiety, stress and depression among higher education students in Portugal and Brazil. J. Affect. Disord Rep. 17, 100825 (2024).


    Google Scholar
     

  • Araiza, M. J. & Kutugata, A. Understanding stress in international students of higher education in a Mexican private university. Procedia Soc. Behav. Sci. 106, 3184–3194 (2013).


    Google Scholar
     

  • Robert Selvam, D. et al. Causes of higher levels of stress among students in higher education who used eLearning platforms during the COVID-19 pandemic. J. King Saud Univ. Sci. 35 (4), 102653 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Šorgo, A., Crnkovič, N., Gabrovec, B., Cesar, K. & Selak, Š. Influence of forced online distance education during the COVID-19 pandemic on the perceived stress of postsecondary students: Cross-sectional study. J. Med. Internet Res. 24 (3), e30778 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feeney, D. M., Holbrook, A. M. & Bonfield, A. Social and emotional Swiss cheese: A model for supporting student mental health and wellbeing in higher education. Social Emotional Learning: Res. Pract. Policy. 5, 100106 (2025).


    Google Scholar
     

  • Wang, T. International students’ stress: Innovation for health-care service. https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1222422&dswid=6078 (Linnaeus University, 2018).

  • Davenport, C., Arentz, S., Sekyere, E. & Steel, A. Standard or activated B-Vitamins for reducing stress in higher education students: A randomised control trial. Adv. Integr. Med. 6 (Supplement), S121 (2019).


    Google Scholar
     

  • Casado, M. I., Castaño, G. & Arráez-Aybar, L. A. Audiovisual material as educational innovation strategy to reduce anxiety response in students of human anatomy. Adv. Health Sci. Educ. 17 https://doi.org/10.1007/s10459-011-9307-2 (2012).

  • Aida, N., Ahmadi, A. & Surawan, S. Innovation management class in overcoming academic burnout in PAI lessons at SMAN 2 Palangka Raya. Kamaya: Jurnal Ilmu Agama. 8, 88–104 (2025).


    Google Scholar
     

  • Shi, L., Wang, Z., Gao, X., Niu, M. & Wu, Y. The impact of curriculum innovation assessment on the effectiveness of stress reduction among Chinese junior high school students: a case study of a public shanghai middle school. In The 8th STIU International Conference (https://conference.stamford.edu/wp-content/uploads/2024/11/220.pdf) (2024).

  • Igbokwe, U. L. et al. Rational emotive intervention for stress management among english education undergraduates: implications for school curriculum innovation. Medicine 98 (40), e17452 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Attarabeen, O. F., Gresham-Dolby, C. & Broedel-Zaugg, K. Pharmacy student stress with transition to online education during the COVID-19 pandemic. Curr. Pharm. Teach. Learn. 13 (10), 1295–1301 (2021).


    Google Scholar
     

  • Chandra, Y. Online education during COVID-19: perception of academic stress and emotional intelligence coping strategies among college students. Asian Educ. Dev. Stud. 10 (2), 229–238 (2021).


    Google Scholar
     

  • Source link

    Subscribe our Newsletter

    Congratulation!